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To analyze the motion of gravity current, a common approach is to solve the hyperbolic shallow water
equations �SWE� together with the boundary conditions at both the current source at far upstream �i.e., the
constrained condition� and the current front at downstream margin �i.e., the front condition�. The use of the
front condition is aimed to take the resistance from the ambient fluid into account, because the ambient
resistance is absent in the SWE. In the present study, we rederive the SWE by taking the ambient resistance
into account and end up with the so-called modified shallow water equation �MSWE�. In the MSWE the
ambient resistance is given by a nonlinear term, so that the use of the front condition becomes unnecessary.
These highly nonlinear equations are approximated by the perturbation expansion to the leading order, and the
resultant singular perturbation equations are solved analytically by the inner-outer expansion approach. Results
show that for constant-flux and constant-volume gravity currents, their outer solutions are exactly the same as
the solutions obtained by solving the SWE with the front condition. The inner solutions give both the profile
and the velocity of the current head and lead to the recovery of the front condition in a more general form. The
combination of inner and outer solutions gives a composite solution for the whole current, which was called by
Benjamin �J. Fluid Mech. 31, 209 �1968�� a “formidably complicated” task. To take the turbulent drag on the
current into account, we introduce the semiempirical Chezy drag term into the MSWE and results agreed with
experimental data very well. The MSWE can be extended for three-dimensional gravity currents, while the
resultant equations become so complicated that analytical solutions might not be available.
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I. INTRODUCTION

A gravity current is a gravity-driven flow intruding hori-
zontally into another fluid. The two fluids are generally of
different density due to different temperature �and/or concen-
tration� or insoluble particles suspended in the intruding
fluid. In many situations, the motion of gravity current is
concerned with human safety and environmental concern,
such as the accidental release of toxic dense gas due to the
rupture of a storage tank, the powder snow avalanche, the
river water discharging into the sea �an upside-down gravity
current�, …. and so on. The study of gravity current therefore
is of considerable importance in natural science and wide
applications in engineering. A detailed description of a vari-
ety of gravity currents is given in the monograph of Simpson
�1�.

Some typical gravity currents can be reconstructed in
laboratories by using a rectangular box filled with two fluids
of different densities separated by a removable lock �2�. As
the lock is removed, two fluids intrude each other and the
gravity current is generated. A remarkable feature observed
is the mixing and entrainment at the current front due to the
strong shear stress at the interface between two fluids. The
shear stress leads to the so-called Kelvin-Helmholtz instabil-
ity at the interface, creating a complicated three-dimensional
flow called “lobes and clefts” at the current front. Besides,
the time-dependent characteristics associated with the initial-
state evolution also enhance the complication of the problem.
All these characteristics lead to the conclusion that a com-
plete solution for the motion of gravity current, either in
theoretical or in numerical form, has long been considered as
a formidable task �3�.

Even though the gravity current motion appears to be dif-
ficult to handle, many previous studies have employed a sim-

plified mathematical model and have successfully revealed
key characteristics of the current motion. For example, in the
study of atmospheric gravity currents, such as sea-breeze
fronts or thunderstorm outflows, the main interest is the pre-
diction of the spreading speed. Observations from early ex-
periments pointed out the current front always approaches a
constant speed, which inspired theoretical researchers to as-
sume a steady-state gravity current �3,4�. This steady-state
approach proposed by Benjamin �3� has since played a deci-
sive role in theoretical approaches and has come up with a
formula that relates the speed of the current front uf with the
height of the current head hf, given by

uf = ��grhf , �1.1�

in which gr= ���−�a� /��g is the reduced gravity, g the gravi-
tational acceleration, � the density of the current fluid, and �a
the density of the ambient fluid. Note that hf is not the height
at the forefront point xf �where the height of the current is
zero� but is the height just behind the current head xm �see
Fig. 1�. The parameter � varies with different situations and
is determined by either theoretical or experimental ap-

FIG. 1. A schematic description of the gravity current
considered.
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proaches. Groebelbauer et al. �2� neglected viscous effect
and used the conservation of mass and momentum to deter-
mine its value to be �2/� �where ���a /�� for an inviscid
gravity current flowing beneath an infinite ambient fluid.

Although the steady-state analysis provides a preliminary
solution of the advancing speed of the current front, the evo-
lution at the initial stage is still the most crucial part to un-
derstand the thorough behavior of gravity current during its
spreading. This is particularly important to oceanographic
engineering, such as the spreading of spilled oil and the in-
trusion of fresh water into the salt water in the vicinity of
estuaries. To attack such a transient situation, many theoret-
ical studies �5–13� applied the shallow-water approximation
under which the vertical velocity of the current is assumed to
be much less than the horizontal velocity at a sufficiently
long time after release. As a result, the shallow-water equa-
tions �SWE� were derived after assumptions such as the flow
is planar or axisymmetric, the two fluids are inviscid, there is
no surface tension or mixing at the interface, and so on, were
made. The planar SWE can be written as

�h

�t
+

��uh�
�x

= 0, �1.2�

�u

�t
+ u

�u

�x
+ gr

�h

�x
= 0. �1.3�

In the above equations, u is the depth-averaged velocity in
the x direction and h is the height of the current. To solve
�1.2� and �1.3�, one needs the constrained condition �or
equivalently, the release condition at the current source �13��
given by

�
0

xf

h�x,t�dx = Q�t� �or�uh�x=0 = �Q�t�−1� , �1.4�

where xf is the forefront position of the current head �see Fig.
1�. This condition presents the conservation of current vol-
ume, where Q�t� accounts for the volume of the gravity
current per unit width. In �1.4�, �=0 corresponds to the
“constant volume” current which can be generated by the
instantaneous release of a given volume of fluid, and �=1
corresponds to the “constant flux” current arising whenever a
fluid discharges from a source of a constant inflow rate
�10,13�. Another condition considered is the so-called front
condition �1.1� at the current front in which the parameter �
�or a frontal Froude number� is determined theoretically or
experimentally as a prerequisite of the problem. Because of
the use of � in �1.1�, this unsteady approach was regarded to
be nonclosed �7�.

Slim and Huppert �12� argued that although the front con-
dition �1.1� is not rigorously applicable on the unsteady mo-
tion of gravity current, it nevertheless can be used as “a
guide” �12�. Klemp et al. �4� stressed in a more straightfor-
ward way that for the hyperbolic-type SWE, the use of the
front condition at downstream is a “logical reconciliation”
because the SWE do not take the influence of the ambient
fluid into account but the front condition actually accounts
for the force balance between the current buoyancy and the
ambient resistance. In the present paper, we propose a novel

approach so that this reconciliation can be avoided. We red-
erive the SWE by taking the ambient resistance into account
and obtain the so-called modified shallow water equations
�MSWE� in which the ambient resistance is accounted for by
a nonlinear term in the equation. As a result, the use of the
front condition becomes unnecessary. The highly nonlinear
MSWE can be approximately solved by the perturbation
method. The perturbation equations turn out to be singular;
the gravity current is then divided into two parts so that the
matched asymptotic expansion can be applied. One part is
the far field away from the current head and the other part is
the near field close to the current head. After matching the
inner solutions of the near field and the outer solutions of the
far field at intermediate region, the composite solutions are
eventually obtained for the entire current. To validate the
MSWE, we apply the new equations on two commonly dis-
cussed currents: the constant flux current ��=1� and the con-
stant volume current ��=0�. For both cases, we obtain the
outer solutions which are the same as those of previous stud-
ies in which the conventional SWE were solved with the
source and the front conditions. More interestingly, the pa-
rameter � of the front condition �1.1� becomes a part of the
inner solutions, implying that the resistance from the ambient
fluid considered in the front condition is now successfully
included in the MSWE.

In this paper, we present the derivation of the MSWE in
Sec. II, solve the MSWE for the constant flux current in Sec.
III, and for the constant volume current in Sec. IV. In Sec.
III, we also introduce the Chezy drag term into the MSWE to
take the turbulent drag effect into account. Finally we discuss
the results, and conclusions are drawn in Sec. V.

II. MODIFIED SHALLOW WATER EQUATIONS

Consider an inviscid gravity current �flow I� intruding into
an inviscid, motionless, and unbounded ambient fluid �flow
II�, see Fig. 1. At the interface, it is assumed that neither
surface tension nor mixing exists. The governing equations
of the gravity current are

�u

�x
+

��

�y
+ j

u

x
= 0, �2.1a�

�u

�t
+ u

�u

�x
+ �

�u

�y
= −

1

�

�P

�x
, �2.1b�

��

�t
+ u

��

�x
+ �

��

�y
= −

1

�

�P

�y
− g , �2.1c�

in which u and � are the velocity components in the x and y
directions, respectively, j=0 accounts for the planar flow and
j=1 for the axisymmetric flow, and P is the pressure inside
the current. At a large time after release, the horizontal ve-
locity and the length of the current are much larger than their
vertical counterparts so that the horizontal velocity can be
assumed to be uniform across the current depth due to the
irrotationality of the flow, i.e., u=u�x , t�. As a result, �2.1a�
can be simplified by integrating it across the current depth,
yielding
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�h

�t
+

��uh�
�x

+ j
uh

x
= 0. �2.2�

In deriving �2.2� we apply the condition ���y=0=0 at the im-
permeable ground and the kinematic boundary condition
���y=h=�h /�t+u��h /�x� at the interface. Due to the hydro-
static approximation that the acceleration in the y direction is
neglected, �2.1c� can be reduced to

P�x,y,t� = Pi�x,t� + �g�h − y� , �2.3�

where Pi is the pressure at the interface. After applying �2.3�
on �2.1b�, we obtain the simplified horizontal momentum
equation as

�u

�t
+ u

�u

�x
+ g

�h

�x
= −

1

�

�Pi

�x
. �2.4�

To find Pi, we apply the unsteady Bernoulli’s equation along
the instant streamline emanating from the current surface
�see Fig. 1� and obtain

Pi�x,t� = Pt − �agh −
1

2
�a�V� i�2 − �a	 ��

�t
	

y=h�x,t�
, �2.5�

in which V� i is the instant absolute velocity of the ambient

fluid at the interface, � the velocity potential defined by V�

=��, and Pt is the total pressure of the ambient fluid far
away from the current. Since the ambient flow is unbounded
and motionless, Pt is considered as a constant. Consequently,
�2.4� becomes

�u

�t
+ u

�u

�x
+ gr

�h

�x
=

�

2

��V� i�2

�x
+ �

�

�x
	 ��

�t
	

y=h�x,t�
� .

�2.6�

The two terms on the right-hand side of �2.6� account for the
dynamical pressure drag �or the form drag� applied on the
current from the ambient fluid.

To solve �2.6� one needs to determine V� i and �; both are

functions of h and/or u. To do this, we first decompose V� i
into the tangential velocity wt and the normal velocity wn.
The wn can be determined by the kinematic boundary condi-
tion

DF

Dt
=

�F

�t
+ V� i · �F =

�F

�t
+ ��F�wn = 0, �2.7�

where F=y−h�x , t�=0, yielding

wn = −
1

��F�
�F

�t
=

�h/�t
�1 + ��h/�x�2

. �2.8�

For the tangential velocity wt, since the horizontal gradient
of normal velocity is usually larger than that of tangential
velocity at the current head, we accordingly assume that
��wn

2� /�x	��wt
2� /�x so that �2.6� is simplified into

�u

�t
+ u

�u

�x
+ gr

�h

�x
=

�

2

�

�x

 ��h/�t�2

1 + ��h/�x�2�
+ �

�

�x
	 ��

�t
	

y=h�x,t�
� . �2.9�

It is noted that the assumption ��wn
2� /�x	��wt

2� /�x is sup-
ported by previous results �see, for example, Droegemeier
and Wilhelmson �14� in which the streamline patterns of a
thunderstorm current simulated numerically support this as-
sumption fairly well� and the present results �as will be
shown in Sec. III D that the present results are in good agree-
ment with previous experimental data�. By virtue of this as-
sumption, the last term of �2.9� can be simplified further into

�

�x
	 ��

�t
	

y=h�x,t�
� � −

�

�x

 ��h/�t�2

1 + ��h/�x�2� . �2.10�

The details of the derivation of �2.10� are shown in Appendix
A. After substituting �2.10� into �2.9� and making the neces-
sary arrangements, we obtain

�u

�t
+ u

�u

�x
+ gr

�h

�x
= −

�

2

�

�x

 ��h/�t�2

1 + ��h/�x�2� . �2.11�

Equations �2.2� and �2.11� are two simultaneous differential
equations for u and h and shall be called the modified
shallow-water equations �MSWE� afterward. The MSWE are
valid for a two-dimensional planar �j=0� or axisymmetric
�j=1� inviscid gravity current intruding beneath an inviscid
quiescent unbounded ambient fluid. The specialty of the
MSWE is that the resistance force in terms of the dynamic
pressure �see �2.6�� is included in the equations so that the
use of the front condition �1.1� becomes unnecessary. Note
that as �
1 is considered, the dynamical pressure drag is
negligible so that the MSWE are degenerated into the SWE.
When ��1 is considered, the reduced gravity is negative
and the equations are good for an upside-down gravity cur-
rent �6,7,11�, in which case the dynamical pressure drag be-
comes greater and predominates the motion of the current.

Since the MSWE are highly nonlinear, we employ the
perturbation method to solve the equations approximately. In
developing the perturbation equations, it is found that the
small parameter � multiplies with the term of the highest
derivative, resulting in a singular perturbation problem. Ac-
cordingly, the method of matched asymptotic expansion is
employed. The gravity current is therefore divided into two
regions, the far field away from the current front and the near
field close to the current front. The solutions of these two
fields are then matched at the interface between these two
fields.

We solve the MSWE for two commonly discussed cur-
rents, i.e., the constant flux current ��=1� and the constant
volume current ��=0�. Only the planar gravity current is
considered because for the axisymmetric gravity current
there is a singular point at x=0, which makes the highly
nonlinear MSWE more difficult to be solved.
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III. CONSTANT FLUX CURRENTS „�=1…

For constant flux currents, the current flow will develop
into a self-similar phase at a sufficiently long time after its
release �9,12�. In such a phase, the flow becomes a long and
narrow current and its velocity and height at the source be-
come stable and approach to constant values u0 and h0, re-
spectively. These conditions will be used in the far field
analysis. In the following, we will first show the far field
solution in Sec. III A and the inner solution in Sec. III B and
then match the two solutions at the matching point in Sec.
III C. Consequently, the complete composite solutions are
obtained for the entire current, including the flow within the
head. In Sec. III D we introduce the inviscid Chezy drag, or
the turbulent drag �15�, into the MSWE to account for the
turbulent drag imposed on the current head and show that
this viscous correction for the MSWE leads to a good agree-
ment between the present results and the experimental data.

A. Far field solutions

At the far field away from the current head, we employ
the following dimensionless outer variables

x� =
x

L
, t� =

u0

L
t, u��x�,t�� =

u�x,t�
u0

, h��x�,t�� =
h�x,t�

h0
,

�3.1�

to nondimensionalize �2.2� and �2.11�, yielding

�h�

�t�
+

��u�h��
�x�

= 0, �3.2a�

�u�

�t�
+ u�

�u�

�x�
+

1

�0
2

�h�

�x�
= − �2�

2

�

�x�

 ��h�/�t��2

1 + ���h�/�x��2� ,

�3.2b�

where L is the total length of the current, �=h0 /L, and �0
=u0 /�grh0 is the source Froude number. Because � is a small
parameter since L	h0, �2.2a� and �2.2b� are singular. To
solve these singular equations, we expand u� and h� into a
power series of � as follows:

u� = u�0�� + �u�1�� + . . . , �3.3a�

h� = h�0�� + �h�1�� + . . . , �3.3b�

where the subscript “�n�” denotes the nth-order term. These
power series are substituted into �3.2a� and �3.2b�, and the
terms of the same order are collected to form the perturbation
equations of each order. The leading order �n=0� equations
are

�h�0��

�t�
+

�u�0�� h�0��

�x�
= 0, �3.4a�

�u�0��

�t�
+ u�0��

�u�0��

�x�
+

1

�0
2

�h�0��

�x�
= 0, �3.4b�

which are identical to the dimensionless form of the conven-
tional SWE �1.1� and �1.2�, implying that the dynamical

pressure drag is negligible far away from the current head.
According to Gratton and Vigo �13�, �3.4a� and �3.4b�

admit a family of self-similar solutions to describe the inter-
mediate asymptotic behavior of the gravity current, for
which the precise initial conditions become irrelevant. By
referring to the analysis of Gratton and Vigo as well as the
boundary conditions at the source, we consider the similarity
variables as

u�0�� �x�,t�� = ũ��, h�0�� �x�,t�� = �0
2h̃��,  = x�/t�.

�3.5�

With these variables, �3.4a� and �3.4b� become

h̃
dũ

d
+ �ũ − �

dh̃

d
= 0, �3.6a�

�ũ − �
dũ

d
+

dh̃

d
= 0. �3.6b�

These two equations have trivial uniform solutions

ũ = B1, h̃ = B2, �3.7�

in which B1 and B2 are integration constants to be deter-
mined by the boundary conditions at the current source. Ac-
cording to the phase-plane analysis of Gratton and Vigo �13�,
the uniform outer solution first occurs at the current source,
where u�0, t�=u0 and h�0, t�=h0, or with the scaling �3.1�
and �3.5�, yielding B1=B2=1. To obtain the nontrivial solu-
tion of �3.6� requires that the coefficient determinant of
�3.6a� and �3.6b� be zero, i.e.,

	 h̃ �ũ − �

�ũ − � 1
	 = 0, �3.8�

or h̃= �ũ−�2. By substituting this into �3.6a� and �3.6b�, we
obtain

ũ =
2

3
 + C1, h̃ = C1 −



3
�2

. �3.9�

The integration constant C1 cannot be determined until the
matching with the inner solutions is accomplished.

By referring to the relations of �3.1� and �3.5�, the trivial
uniform solutions �3.7� can be rewritten in the original form
as

u�0�
uni = u0, h�0�

uni = h0, �3.10�

and the nontrivial solutions �3.9� as

u�0�
ct =

2

3

x

t
+ C1u0, h�0�

ct = gr
−1C1u0 −

1

3

x

t
�2

, �3.11�

where the superscripts “uni” and “ct” denote the uniform
solution and the nontrivial solution, respectively. Mathemati-
cally, both trivial and nontrivial solutions may exist simulta-
neously. According to Gratton and Vigo �13�, the true outer
solutions are constructed by matching uniform solutions with
nontrivial solutions �see Fig. 2�. The uniform solution �3.10�
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first appears at the source, and the nontrivial solution �3.11�
subsequently joins to describe the falling behavior of the
current. Gratton and Vigo called �3.11� “the critical transi-
tion” because it describes the transition from upstream to
downstream conditions. To construct the outer solutions, we
assume that the first conjugate point locates at x=xs �see Fig.
2�, where the velocity and the height are continuous, i.e.,

�u�0�
uni�x=xs

= �u�0�
ct �x=xs

, �h�0�
uni�x=xs

= �h�0�
ct �x=xs

, �3.12�

which account for two simultaneous equations for C1 and xs.
Since �3.10� is linear and �3.11� is binomial, there are two

possible distinctive solutions �see Fig. 3�. One solution ac-
counts for the combination of the uniform solution and the
descending part of �3.11�, describing the falling behavior of
the gravity current, i.e.,

C1 =
�0 + 2

3�0
, xs = �0 − 1

�0
�u0t . �3.13�

Another solution accounts for the combination of the uni-
form solution and the ascending part of �3.11�, describing the
rising behavior of the gravity current, i.e.,

C1 =
�0 − 2

3�0
, xs = �0 + 1

�0
�u0t . �3.14�

We show in Appendix B that �3.14� is physically unreason-
able and therefore only the descending part solution �3.13�
will be considered in the following analysis.

Consequently, the second uniform solutions join the criti-
cal transition at the second conjugate point xn �see Fig. 2�,
where the velocity and the height are continuous, i.e.,

2

3

xn

t
+ C1u0 = �u�0��x=xn

, �3.15a�

gr
−1
C1u0 −

1

3

xn

t
�2

= �h�0��x=xn
. �3.15b�

Note that �xn ,u�0��x=xn
and �h�0��x=xn

cannot be determined un-
til the matching with the inner solution is accomplished.

B. The near field solution

In the near field we assume �xf −xm� to be the character-
istic length LC, where xf is the foremost point of the gravity
current and xm the margin point of the near field �see Fig. 2�.
In the near field the characteristic length LC shall satisfy the
condition h0 /LC=O�1� or LC /L=� �16�. The dimensionless
inner variables are then given by

X �
x − xm�t�

LC
=

x� − xm� �t��
�

, �3.16a�

U�X,t�� �
u

u0
= u��x�,t�� , �3.16b�

H�X,t�� �
h

h0
= h��x�,t�� . �3.16c�

Equations �3.2a� and �3.2b� are nondimensionalized by these
inner variables and become

�H

�t�
−

1

�

dxm�

dt�

�H

�X
+

1

�

��UH�
�X

= 0, �3.17a�

�U

�t�
−

1

�

dxm�

dt�

�U

�X
+

U

�

�U

�X
+

1

��0
2

�H

�X

= −
�

2�

�

�X��
�H

�t�
−

dxm�

dt�

�H

�X
�2

1 +  �H

�X
�2 � . �3.17b�

Again, the perturbation method is employed to solve these
equations. After substituting the power series of H and U like
�3.3� into these two equations and collecting the terms of the
same order to form perturbation equations of each order, we
obtain the leading order equations as

−
dxm�

dt�

�H�0�

�X
+

�U�0�H�0�

�X
= 0, �3.18a�

−
dxm�

dt�

�U�0�

�X
+ U�0�

�U�0�

�X
+

1

�0
2

�H�0�

�X

= −
�

2
dxm�

dt�
�2 �

�X

 ��H�0�/�X�2

1 + ��H�0�/�X�2� , �3.18b�

in which U�0�, uf�0�
� , and H�0� are the leading order terms of

the power series of U, uf�, and H, respectively. To solve these
two equations, we integrate �3.18a� once over X and obtain

FIG. 2. �Color online� The conjugate point between uniform
solution �3.10� and critical transition �3.11� is denoted by xs, and the
conjugate point between near field and far field is denoted by xn.
The margin point of the near field is xm.

FIG. 3. Illustration of the conjugation of the uniform solutions
�3.10� and the critical transition �3.11�.
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−
dxm�

dt�
H�0� + U�0�H�0� = B3�t� . �3.19�

The integration function B3 shall be zero to satisfy that H�0�
be zero when the current surface touches the horizontal bed.
As a result,

U�0� =
dxm�

dt�
, �3.20�

whose value is to be determined by matching with the outer
solutions of the far field. Note that since xm� depends on t� but
not on X, U�0� shall be uniform so that uf�0�

� =U�0� and the first

two terms on the left-hand side of �3.18b� vanish. This gives

1

�0
2

�H�0�

�X
= −

�

2
U�0�

2 �

�X

 ��H�0�/�X�2

1 + ��H�0�/�X�2� . �3.21�

This equation balances the forces between the static pressure
within the current head and the dynamical pressure drag ap-
plied on the current head. A typical numerical solution of
�3.21� in terms of the profile of current head is shown in Fig.
4. The present inner solution �3.21� gives a current head
having a smooth profile, being more physically reasonable
than those obtained by solving the conventional SWE �see,
for example, Fig. 13 of Klemp et al. �4� or Fig. 9 of Gratton
and Vigo �13� in which the current heads appeared as a ver-
tically cut front�. Referring to �3.16�, the inner solutions in
terms of the original variables are

u�0�
inner = uf�0�

=
dxm

dt
, �3.22a�

h�0�
inner = h0H�0��X,t�� . �3.22b�

Note again that the function H�0� is obtained by solving
�3.21� numerically.

C. Asymptotically matched solution

For constant flux currents, the matching requires that in-
ner solutions u�0�

inner and h�0�
inner at X=−� attach to the uniform

outer solutions �u�0�
ct �x=xn

and �h�0�
ct �x=xn

, respectively. How-
ever, since no explicit analytical inner solution can be used
directly to match the outer solution, a further simplification
is necessary. To do this, we first integrate �3.21� once and
obtain

H�0� = −
��0

2

2
U�0�

2�  �H�0�

�X
�2

1 + ��H�0�/�X�2� + f�t�� , �3.23�

where f�t�� is the integration function. Since the inner solu-
tion must match the uniform part of the outer solution, the
slope of the current profile shall be zero when H�0�
= �h��0��x=xn

�see Fig. 2�. Therefore, �3.23� gives

f�t�� = �h�0�� �x=xn
. �3.24�

Another condition required to solve �3.21� analytically is that
�H�0� /�X=−tan �c, which shall be satisfied at the contact
point and �c is the contact angle. After substituting �3.24� as
well as this condition into �3.23�, we obtain

2�h�0�� �x=xn

�U�0�
2 �0

2 =
tan2 �c

1 + tan2 �c
� ���c� . �3.25�

Equation �3.25� can be rewritten in terms of the original
variables, yielding

uf�0�
=� 2

����c�
gr�h�0��x=xn

. �3.26�

Note that �3.26� turns out to be equivalent to the front con-
dition �1.6�, provided that

� =� 2

����c�
, �3.27�

where � is a function of both the density ratio � and the
contact angle �c. It is interesting to note that for a contact
angle �c�90°, �3.25� gives ��1 and ���2/�, which is
exactly the same with the result obtained by the steady-state
approach �see �1.1��, suggesting that �c=90° be a proper
physical condition for the present approach. In fact, this in-
ference will be confirmed in Sec. III D, where we introduce
the inviscid Chezy drag into the MSWE so that the present
theoretical results can compare nicely with the experimental
data.

After obtaining �3.26�, we are ready to get the composite
solutions as follows. We use �3.26� to combine �3.15a� and
�3.15b� to determine the second conjugate point as

xn = 3
�� − 1�
�� + 2�

C1u0t , �3.28�

in which � is given in �3.27�. With this xn, �3.15a� and
�3.15b� become

uf�0�
=

3�

� + 2
C1u0, �3.29�

FIG. 4. �Color online� The height profile is obtained by comput-
ing the inner equation �3.21� numerically. The solutions correspond
to ��0

2U�0�
2 =2, and the boundary conditions used are H�0�=0 and

�H�0� /�X=−� at X=1.
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�h�0��x=xn
=  3C1

� + 2
�2u0

2

gr
. �3.30�

Since uf�0�=U�0�=dxm /dt, we can integrate �3.29� with re-
spect to t to obtain

xm =
3�

� + 2
C1u0t . �3.31�

So far, we have obtained the leading order solutions for
the composite gravity current of a constant flux, which are
summarized in the following:

u�0� =�
u0, 0 � x � xs �current source� ,

2

3

x

t
+ C1u0, xs � x � xn �descending transition� ,

3�

� + 2
C1u0, xn � x � xf �current head� , �

�3.32�

h�0� = � h0, 0 � x � xs �current source� ,

gr
−1�C1u0 − x/3t�2, xs � x � xn �descending transition� ,

h0H�0�, xn � x � xf �current head� ,
� �3.33�

where �, xs, and xn are given in �3.27�, �3.13�, and �3.28�,
respectively, and H�0� is the solution given by �3.21�. To ex-
emplify the results, we show in Fig. 5 the solutions of �3.32�
and �3.33� for �0=1.8 with six different � �curves a–f�.

Note that the above solutions are valid only for �0��
�see the discussion in Appendix B�. According to Gratton
and Vigo �13�, �0�� leads to a discontinuous hydraulic
jump at an intermediate region of the current. To construct
the discontinuous solutions, the jump conditions must be
used at some intermediate region of the current to match the
two uniform outer solutions. For curiosity, a typical discon-
tinuous solution is also given in Fig. 5, see curve �g�. Note
that curve �a�, corresponding to the limited solution for non-
Boussinesq gravity currents ���0�, accounts for the classi-
cal solution of the dam-break problem, in which no ambient
resistance is imposed on the current and the head vanishes.

Obviously, as shown by curve �g�, only Boussinesq gravity
currents ���1� can lead to �0�� as well as a hydraulic
jump.

D. Viscous correction of MSWE

To consider the viscous effect on gravity currents, one
may follow the procedure of Sec. II to derive the viscous
MSWE when the viscous terms are included in �2.1�, but
unfortunately, an accurate and compact expression of the
shear stress cannot be acquired due to the complicated flow
motion both at the interface and on the bottom surface and
the resultant equations can be too complicated to be solved
analytically. To consider the viscous effect on the gravity
current in a feasible way, Hogg and Pritchard �15� proposed
a semiempirical relation or the so-called inviscid Chezy drag
�=�CDu2 for the large-scale turbulent gravity currents,
where the turbulent drag coefficient CD frequently falls
within the range 0.01–0.001. To examine the viscous correc-
tion for the inviscid MSWE, we introduce the Chezy drag
into the MSWE and obtain

�u

�t
+ u

�u

�x
+ gr

�h

�x
= −

�

2

�

�x

 ��h/�t�2

1 + ��h/�x�2� −
CDu2

h
.

�3.34�

We solve �3.34� for constant flux currents with the same
procedure as shown in Sec. III. For the analysis of the far
field, we employ �3.1� to nondimensionalize outer equations,
yielding

�u�

�t�
+ u�

�u�

�x�
+

1

�0
2

�h�

�x�
= − �2�

2

�

�x�

 ��h�/�t��2

1 + ���h�/�x��2�
−

CDu�2

�h�
. �3.35�

FIG. 5. Leading order solutions of constant flux currents ��
=1� at t�=1. The solid lines account for dimensionless depth pro-
files, and the dotted lines for dimensionless velocities. The solutions
correspond to �0=1.8, �a� �=0 �����, �b� �=0.01 ���14�, �c�
�=0.05 ���6.3�, �d� �=0.2 ���3.16�, �e� �=0.4 ���2.24�, �f�
�=0.617 ���1.8�, and �g� �=0.95 ���1.45�.
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Note that if the turbulent drag coefficient is small, say CD
�O��2�, the Chezy drag term of �3.35� can be neglected. In
such a case the outer equations are the same with �3.4a� and
�3.4b� and their outer solutions are �3.10� and �3.11�. But for
a larger drag coefficient, say CD=O���, the Chezy drag term
is no longer negligible so that �3.35� cannot be solved ana-
lytically. Nonetheless, since CD frequently falls within the
range 0.01–0.001, being of an order of O��2� or O��3�, the
outer solution �3.10� and �3.11� can therefore be applied for
the present case.

For the analysis of the near field, the effects of the turbu-
lent drag are significant because the Chezy drag term be-
comes very large in the vicinity of the contact point �where
h→0�. After employing the inner variables �3.16� to nondi-
mensionalize the inner equations and applying the perturba-
tion procedure on the dimensionless equations, the leading-
order inner equation is obtained as

1

�0
2

�H�0�

�X
= −

�

2
U�0�

2 �

�X

 ��H�0�/�X�2

1 + ��H�0�/�X�2� − CD

U�0�
2

H�0�
.

�3.36�

It is found from �3.36� that H�0�→0 gives U�0�
2 /H�0�=�, so

that �H�0� /�X=−�. Accordingly, we solve �3.36� numerically
together with the boundary conditions

H�0� = 0 and �H�0�/�X = − � at X = 1. �3.37�

The results for �=1, �0U�0�=�2, and six different CD are
shown in Fig. 6.

From Fig. 6 one can see that a larger turbulent drag gives
a bigger current head with a higher hf, which in turn leads to
a smaller � according to the relation uf =��grhf, given that
uf remains the same. This relation also leads to �1 /�2
=�hf2 /hf1. Based on this relation as well as the results of
Fig. 6, we can estimate the value of � for different CD as
follows. For example, for CD=0.03 �see curve f� the height
�H�0��X=−4 �assumed to account for the height of the current

head hf� is about 1.3 times that of CD=0.0001, which corre-
sponds to the inviscid gravity current having �=�2 for �
=1 �17�. So � for �=1 and CD=0.03 is calculated by the
relation �=�2��1/1.3=1.24, which is close to the experi-
mental value 1.19 obtained by Simpson and Britter �18�.
With the same procedure, we also estimate other possible �
for different � and CD and obtain the results shown in Fig. 7.
In comparison with the experimental data of Groebelbauer et
al. �2�, we see that, clearly, the curve of CD=0.03 fits the
experimental data better than the inviscid case ��=�2/��,
and this trend becomes more evident for the currents having
a smaller �. This leads to a conclusion that for Boussinesq
currents having ��1, the inviscid MSWE gives a result
comparing fairly well with the experimental data. For non-
Boussinesq currents having a small � �such as the dam-break
case�, the inviscid form drag becomes insignificant and the
turbulent drag effect predominates the resistance. Therefore
the MSWE shall include the Chezy drag term to account for
viscous effect.

IV. CONSTANT VOLUME CURRENTS „�=0…

The constant volume current can be generated from the
sudden release of a fixed volume of a denser fluid into an
infinite lighter ambient fluid, such as the dam-break problem,
see Fig. 8 �19�. The current starts from an initial �slumping�
phase, wherein a return bore propagates backward to up-
stream and a nose moves forward to downstream with a vir-
tually constant speed. When the return bore touches the back
wall, a reflected bore is formed and then propagates toward
the current front. Once the reflected bore catches up with the
current front, the current falls into the self-similar phase �20�.
In this section we will develop the approximate solutions at
both the initial phase and the self-similar phase.

FIG. 6. Height profiles within the near field, obtained by solving
�3.36� numerically together with the conditions �3.37� for �=1,
�0U�0�=�2, and six turbulent drag coefficients CD: �a� 0.0001, �b�
0.001, �c� 0.005, �d� 0.01, �e� 0.02, and �f� 0.03.

FIG. 7. �Color online� Estimation of values on � from numerical
solutions of �3.36�. The plot shows that a larger CD gives a value of
� closer to experimental data.
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A. The initial phase solution

At the initial phase, since the boundary conditions at the
source are u=0 and h=h0, the dimensionless outer variables
can be chosen as

x� =
x

L
, t� =

�grh0

L
t, u��x�,t�� =

u�x,t�
�grh0

, �4.1�

h��x�,t�� =
h�x,t�

h0
,

in which �grh0 is chosen as the characteristic velocity. By
using these outer variables, �2.2� and �2.11� are nondimen-
sionalized into

�h�

�t�
+

��u�h��
�x�

= 0, �4.2a�

�u�

�t�
+ u�

�u�

�x�
+

�h�

�x�
= �2�

2

�

�x�

 ��h�/�t��2

1 + ���h�/�x��2� .

�4.2b�

After applying the same perturbation procedure as that of
Sec., III, the leading order outer equations are obtained as

�h�0��

�t�
+

�u�0�� h�0��

�x�
= 0, �4.3a�

�u�0��

�t�
+ u�0��

�u�0��

�x�
+

�h�0��

�x�
= 0. �4.3b�

It is seen that the outer equations turn out to be identical with
the conventional SWE. To solve these two equations we em-
ploy the similarity variables

u�0�� �x�,t�� = ũ��, h�0�� �x�,t�� = h̃��,  = x�/t�,

�4.4�

to transform �4.3a� and �4.3b� into the same ordinary differ-
ential equations as �3.6a� and �3.6b� and, accordingly, the
same similarity solutions as �3.7� and �3.9� are obtained. Af-
ter applying the initial conditions, the uniform solutions �3.7�
become u�0�

uni=0 and h�0�
uni=h0, and the critical transition solu-

tions are of the same form as �3.11�. We assume again that
the uniform solutions join the critical transition at x=xs �see
Fig. 8�, resulting in

0 =
2

3

xs

t
+ C2

�grh0, �4.5�

h0 = gr
−1C2

�grh0 −
1

3

xs

t
�2

. �4.6�

As done in Sec. III A, matching at x=xs leads to two solution
groups of C2 and xs, of which the only physically reasonable
solutions are those matching the descending part of �3.11�.
They are

C2 =
2

3
and xs = − �grh0t . �4.7�

For the inner solutions of the near field, we repeat the
analysis of Sec. III C and obtain the same equations as well
as the same solutions �3.26� and �3.27�. This implies that the
inner solutions are independent of the release conditions at
the current source, which explains why the front condition
can always be used single handedly for arbitrary release con-
ditions. Again, we assume that the critical transition joins the
second uniform solutions at x=xn, resulting in

2

3

xn

t
+ C2

�grh0 = uf�0�
, �4.8�

gr
−1C2

�grh0 −
1

3

xn

t
�2

= �h�0��x=xn
. �4.9�

By considering �3.26� and �3.27�, the above equations can be
combined so that xn can be determined as

xn =
2� − 2

2 + �
�grh0t or xn =

− 2� − 2

2 − �
�grh0t . �4.10�

The second part of �4.10� is physically unreasonable because
it gives xn�xs. Therefore, we substitute the first part of
�4.10� into �4.8� and �4.9� and obtain

uf�0�
=

2�

� + 2
�grh0, �h�0��x=xn

=  2

� + 2
�2

h0. �4.11�

Note that �4.11� is identical with the solution of Gratton
and Vigo �13�, although these two approaches are different in
three aspects: �a� Gratton and Vigo considered the front con-
dition �1.6� to account for the resistance force from the am-
bient fluid, while in the present study the resistance force is
included in the governing equation �2.11�. �b� The present
approach provides a solution with a smooth profile of the
current head, while that of Gratton and Vigo gave a vertically
cut front. �c� In the present approach � is part of the solution,
while � �or k� must be given as a prerequisite in Gratton and
Vigo.

B. The self-similar phase solution

When the flow reaches the self-similar phase, its solution
will no longer relate to the initial conditions. Hence, we con-
sider the dimensionless outer variables

FIG. 8. Initial stage of the constant volume current. A backward
wave propagating toward upstream with a constant wave speed
�grh0 is shown. The front head also moves at a constant speed,
which is in terms of �.
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x� =
x

L
, t� =

u0

L
t, u� =

u

u0
, h� =

h

h0
, �4.12�

in which the characteristic scales are h0=�Q0 and u0
=Q0

1/4gr
1/2, where Q0 is the volume of the current per unit

width �see �1.3��. By nondimensionalizing the MSWE with
these outer variables and applying the same perturbation pro-
cedure, we obtain the same leading order outer equations as
�4.3a� and �4.3b�. To catch the characteristics that the height
of the current at the source decays with time, we follow
Grundy and Rottman’s approach �5� using the similarity vari-
ables

 =
x�

t�2/3 , u�0�� �x�,t�� = t�−1/3ũ��, h�0�� �x�,t�� = t�−2/3h̃�� ,

�4.13�

to transform �4.3a� and �4.3b� into

−
2

3

d�h̃�
d

+
d�ũh̃�

d
= 0, �4.14a�

−
1

3
ũ −

2

3


dũ

d
+ ũ

dũ

d
+

dh̃

d
= 0. �4.14b�

The above equations have a trivial “zero” solution, ũ= h̃=0,
describing the dry region near the source �13�. Nevertheless,
they also have a nontrivial solution to be derived in the fol-
lowing. We first integrate �4.14a� once, yielding

−
2

3
 + ũ�h̃ = B4. �4.15�

The integration constant B4 is determined to be zero by the
conditions that the velocity at the source is zero and the
depth is finite as well as decays with time, so that �4.15�
gives

ũ = 2/3. �4.16�

After substituting �4.16� into �4.14b� and integrating the re-
sultant equation once, we obtain

h̃�� =
1

9
2 + K�, �4.17�

where K� is an integration constant. Note that the nontrivial
solutions �4.16� and �4.17� had been obtained by Hoult �7�.
We rewrite these solutions in terms of the original variables
as

u�0�
outer =

2

3

x

t
, �4.18a�

h�0�
outer =

1

9gr
 x

t
�2

+ Kt−�2/3�, �4.18b�

where the constant K= �h0
2L2 /gr�1/3K� is to be determined

later. The continuous conditions at the matching point xn are
given by

�u�0�
outer�x=xn

=
2

3

xn

t
= �u�0�

inner�X→−� = uf�0�
, �4.19a�

�h�0�
outer�x=xn

=
1

9gr
 xn

t
�2

+ Kt−�2/3� = �h�0�
inner�X→−� = �h�0��x=xn

.

�4.19b�

Due to the independence of the inner solutions, we can
match the outer solutions by substituting �3.26� and �3.27�
into �4.19a� and �4.19b�, respectively, and obtain

xn = 3�� Kgr

4 − �2 t2/3, �4.20�

which is then substituted into �4.19a� and �4.19b� to obtain

uf�0� = 2�� Kgr

4 − �2 t−�1/3�, �h�0��x=xn
=  4

4 − �2�Kt−�2/3�.

�4.21�

Because uf�0�
=dxm /dt, we can integrate the above equation to

yield

xm = 3�� Kgr

4 − �2 t2/3. �4.22�

Note that �4.20� is identical with �4.22�, or xn=xm, implying
that the conjugate point is exactly the starting point of near
field. We summarize the composite solution as follows:

u�x,t� = �
2

3

x

t
, 0 � x � xn,

2�� Kgr

4 − �2 t−�1/3�, xn � x � xf ,� �4.23�

h�x,t� = � 1

9gr
 x

t
�2

+ Kt−�2/3�, 0 � x � xn,

h0H�0�, xn � x � xf .
� �4.24�

The parameters K and xf remain to be determined. Note that
there is no need to calculate xf because, according to Mei
�16�, the value of xf is proportional to the small parameter �
and therefore shall be a small value. The parameter K can be
determined by considering the conservation of volume

�
0

xm

h�0�
outerdx + �

xm

xf

h�0�
innerdx = Q0. �4.25�

However, in �4.25� h�0�
inner is a numerical solution of �3.21� so

that an analytical solution of �4.25� is not available. A further
simplification is therefore necessary. In doing so, we express
the volume per unit width of the current head as VH�t� so that
�4.25� is rewritten as

�
0

xm

h�0�
outerdx = Q0 − VH�t� � V0�t� . �4.26�

By substituting �4.18b� and �4.22� into �4.26�, we obtain
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K =
4 − �2

�12� − 2�3�2/3V0�t�2/3gr
−1/3. �4.27�

Since K is a constant, V0�t� shall be a constant too, implying
that the volume of the current head VH�t� shall also be a
constant. By virtue of this implication, the constant K is of
the same form as �4.27� when V0�t� is replaced by V0= �Q0

−VH�, which is a constant. Eventually, by substituting this V0

into �4.21� we obtain the height and speed at the current front
as

�h�0��x=xn
=

4

�12� − 2�3�2/3V0
2/3gr

−1/3t−2/3, �4.28�

uf�0� =  4�2

6 − �2V0gr�1/3

t−1/3. �4.29�

These solutions are the same as previous solutions �5–13�,
as long as V0 is replaced by Q0, implying that the volume of
the current head VH was neglected by those studies. How-
ever, as shown in Fig. 9�a�, VH accounts explicitly for a part
of the total volume of the current and shall not be neglected.
Note also that the solutions �4.28� and �4.29� are valid only
for ��2, since we have assumed there is no dry region at
the source �13�. For ��2, a dry zone appears at the source
so that the zero solution accounts for the current at the source
and joins with the nontrivial solutions �4.18a� and �4.18b� at
the point where the depth is zero. For such a case, we can
apply the same solution procedure and obtain the results con-
sistent with those of Gratton and Vigo �13�, as shown in Fig.
9�b�.

V. DISCUSSION AND CONCLUSIONS

We rederive the shallow water equations for inviscid
gravity currents of arbitrary density ratio by taking the am-
bient resistance into account and end up with the modified
shallow water equations �2.2� and �2.11�, in which the ambi-
ent resistance is accounted for by the nonlinear term on the
right-hand side of �2.11�. These highly nonlinear partial dif-
ferential equations are solved by perturbation method ap-
proximately to the leading order. Since the resultant pertur-
bation equations are singular, the gravity current is divided
into the inner region near the current head and the outer
region away from the current head so that the matched
asymptotic expansion procedure can be applied. The outer
equations are solved by similarity transformations while, un-
fortunately, the inner equations can only be solved numeri-
cally. Since the numerical inner solutions cannot be used to
match with the analytical outer solutions, a further simplifi-
cation is therefore applied so that the inner solution can be
obtained in an analytical form; then the two solutions even-
tually can be matched at the intermediate region to obtain the
composite solutions for the entire current. The MSWE are
applied to the two commonly investigated cases, the constant
flux ��=1� and the constant volume ��=0� gravity currents,
and the solutions are summarized in Table I. Although the
present solutions only approximate to the leading order, a
solution of high-order approximation is unnecessary because
the nonlinear term of �3.2b� is of an order of �2 so that higher
order terms only make an insignificant contribution to the
solution.

The motivation to derive MSWE is straightforward: The
SWE are hyperbolic-type partial differential equations so
that the consideration of the front condition �1.1� at down-
stream is mathematically nonrigorous. But without �1.1�, the
ambient resistance is absent from the formulation. We there-
fore rederive the governing equations by taking the ambient
resistance into account. The resultant MSWE are parabolic-
type differential equations in which the ambient resistance is
accounted for by a nonlinear term. To solve the parabolic
MSWE, boundary conditions are needed both upstream and
downstream. To the outer equations, the upstream boundary
condition is the source condition �1.4� and the downstream
boundary condition is the matching condition at the interface
between the outer and inner regions. To the inner equations,
the upstream boundary condition is the matching condition
and the downstream condition is the contact angle at the
contact point �h=0�, given as �c�90°. As a consequence,
the MSWE lead to a composite solution for the entire cur-
rent, which has the following features:

�1� The outer solutions turn out to be exactly the same as
those obtained by solving the convectional SWE �1.2� and
�1.3� together with the front condition �1.1�.

�2� The inner solution, independent of the release condi-
tion at the current source, describes both the profile and the
velocity of the current head. It also leads to a new front
condition �3.26�, a function of both density ratio � and the
contact angle �c, which is obtained as a part of the inner
solution.

FIG. 9. �Color online� Comparison between the solution in
terms of the current profile, obtained by solving the convectional
SWE and the present solution obtained by solving the MSWE for
the constant-volume case: �a� ��2; �b� ��2.
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�3� The combination of inner and outer solutions gives
the composite solution in analytical form �see Table I� for the
entire gravity current, including domains of the far field and
the head, which was described by Benjamin �3, p. 227� as a
“formidably complicated” task.

To consider the turbulent drag on the current, we intro-
duce the semiempirical Chezy drag term into MSWE and
find that this term serves well to account for the viscous
correction of the present approach. For Boussinesq currents
having ��1, the inviscid MSWE can simulate the current

TABLE I. Summary of the solutions of MSWE: constant volume current ��=0� and constant flux current ��=1�.

Cases

�=1 �=0

Self-similar phase
�Without hydraulic jumps� Initial slumping stage

Self-similar phase
�Without dry-region�

Outer
solutions

u = �u0, 0 � x � xs

2

3

x

t
+ C1u0, x � xs � u = � 0, x � xs

2

3

x

t
+ C2

�grh0, x � xs � u =
2

3

x

t

h = � h0, 0 � x � xs

gr
−1
C1u0 −

1

3

x

t
�2

, x � xs � h = � h0, 0 � x � xs

gr
−1
C2

�grh0 −
1

3

x

t
�2

, x � xs � h =
1

9gr
 x

t
�2

+ Kt−�2/3�

Inner
solutions � u = uf

h = h0H�0��X,t�� � where H�0� is given by Eq. �3.21� numerically. The inner solutions recover

the front condition uf =�� 2
��

�grhf, in which �=
tan2 �c

1+tan2 �c
, gr= �1–��g, and �=�a /�.

Composite
solution
by
matching u =�

u0 0 � x � xs

2

3

x

t
+ C1u0 xs � x � xn

3�

�2 + ��
C1u0 xn � x � xf

� u =�
0 x � xs

2

3

x

t
+ C2

�grh0 xs � x � xn

2�

�2 + ��
�grh0 xn � x � xf

� u = �
2

3

x

t
, 0 � x � xm

2�� Kgr

4 − �2 t−�1/3� xm � x � xf
�

h = �
h0 0 � x � xs

gr
−1
C1u0 −

1

3

x

t
�2

xs � x � xn

h0H�0� xn � x � xf

� h = �
h0 x � xs

gr
−1
C2

�grh0 −
1

3

x

t
�2

xs � x � xn

h0H�0� xn � x � xf

� h = � 1

9gr
 x

t
�2

+ Kt−�2/3�, 0 � x � xm

h0H�0�, xm � x � xf
�

Constants

C1 =
�0 + 2

3�0
C2 =

2

3
K =

4 − �2

�12� − 2�3�2/3V0
2/3gr

−1/3

Some
conjugate
points

xs =
�0 − 1

�0
u0t

xs = − �grh0t
xm = xn = 3�� Kgr

4 − �2 t2/3

Values
at
the front

xn = 3C1
� − 1

� + 2
u0t xn =

2� − 2

2 + �
�grh0t

uf =
3�

2 + �
C1u0 uf =

2�

� + 2
�geh0 uf = 2�� Kgr

4 − �2t−�1/3�

h� =  3C1

� + 2
�2u0

2

gr

h� =  2

� + 2
�2

h0 h� =  4

4 − �2�Kt−�2/3�
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motion fairly well. For non-Boussinesq currents having
small �, the turbulent flow becomes vigorous so that the
viscous drag effect is significant. As a result, the MSWE
shall include the Chezy drag term so that the turbulent drag
on the current can be taken into account.

We note that the solution for �=0 at the initial stage �the
dam-break case of Sec. IV A� is a special case of the solution
for �=1 as �0=0, a case such that the flow velocity at the
current source vanishes. This fits exactly the dam-break case
�Fig. 8�, implying that the solution procedures of these two
cases are correct.

We also note that the present MSWE are valid for the
gravity current intruding beneath an infinite ambient fluid but
may be invalid for the “lock exchange” currents in a channel
of finite depth. To derive the MSWE for lock exchange cur-
rents, the pressure Pt can no longer be considered as a con-
stant. Consequently, the derivation starting from �2.9� shall
be very different from the present ones and may end up with
equations which are so complicated that they may not be
solved analytically.

Finally, please note that the present MSWE are valid for
two-dimensional planar or axisymmetric gravity currents.
For many gravity currents observed in experiments and in
nature, nonetheless, the flow around the current head is
three-dimensional and has a vigorous variation in the span-
wise direction at the current front. Since the inner solution of
the current head is the major contribution of the present
MSWE approach, to solve the three-dimensional MSWE ac-
cordingly shall merit further study. The derivation of the
three-dimensional MSWE is shown in Appendix C.
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APPENDIX A: THE DERIVATION OF THE UNSTEADY
FORCE TERM OF (2.9)

The unsteady force term of �2.9�, or the term containing
�, cannot be determined exactly except to be simplified fur-
ther by neglecting wt. To simplify this term, a crucial differ-
ential identity is needed for the whole derivation. First, let us
consider

	 ��

�t
	

y=h
=

�

�t
����y=h�x,t�� − 	 ��

�y
	

y=h

�h

�t
, �A1�

so that

�

�x

	 ��

�t
	

y=h
� =

�

�x

 �

�t
����y=h� − 	 ��

�y
	

y=h

�h

�t
�

=
�2

�x�t
����y=h� −

�

�x
	 �h

�t

��

�y
	

y=h
� .

�A2�

The first term on the right-hand side of �A2� can be further
expanded as follows:

�2����y=h�
�x�t

=
�

�t

�����y=h�
�x

=
�

�t

	 ��

�x
	

y=h
+ 	 ��

�y
	

y=h

�h

�x
�

=
�

�t

V� i · e�x +

�h

�x
e�y�� , �A3�

in which the identity of velocity potential V� =�� has been
used. By neglecting wt in �A3�, we obtain

�2����y=h�
�x�t

�
�

�t

wne�n · e�x +

�h

�x
e�y�� = 0, �A4�

in which e�n=−h,xe�x+e�y /�h,x
2+1 and �2.8� have been used.

As for the second term on the right-hand side of �A2�, we
first consider

	 ��

�y
	

y=h
= � � ��y=h · e�y = V� i · e�y � wne�n · e�y =

h,t

1 + h,x
2 .

�A5�

Accordingly,

�

�x
	 �h

�t

��

�y
	

y=h
� =

�

�x

 h,t

2

1 + h,x
2 � . �A6�

After substituting �A4� and �A6� into �A2�, we eventually
obtain

�

�x
	 ��

�t
	

y=h�x,t�
� � −

�

�x

 h,t

2

1 + h,x
2 � = −

�wn
2

�x
. �A7�

Obviously, the variation of the potential function derived
from the change of the interface turns out to be of the same
form as that of the dynamic pressure.

APPENDIX B: DISCUSSION ABOUT THE ASCENDING
AND DESCENDING SOLUTIONS

The matching procedure for the descending solutions of
Sec. III A is applied to obtain the ascending solutions, and
the results are summarized in Table II, in which both de-
scending and ascending solutions at three positions xs, xn,
and xm are shown in the first three rows and those in the last
two rows are shown for the discussion about the possibility
in physical sense of the solutions.

We note that the variables in both the fourth and fifth rows
must be larger than zero due to the fact that xm�xn�xs�0.
For the descending solutions, xm�xn�xs can be satisfied
when ���0, which satisfies automatically the condition �
��0�1 concluded by Gratton and Vigo �13�, so that the
descending solutions are physically possible. For the ascend-
ing solutions, if xm�xn holds, there shall be �0���2 or
�0���2; if xn�xs holds, there shall be �0�2�� or �0
�2��. These two cases lead to conflicting results so that
the ascending solutions are physically impossible.

APPENDIX C: DERIVATION OF THREE-DIMENSIONAL
MSWE

The present approach deriving the two-dimensional
MSWE can also be applied to derive the three-dimensional
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counterpart in the Cartesian coordinate system. By neglect-
ing mixing entrainment and surface tension at the interface
and by assuming that the velocities in both the x and y di-
rections are uniform, the kinematic condition is employed to
simplify the mass conservation into

�h

�t
+

��uh�
�x

+
��vh�

�y
= 0, �C1�

where h=h�x ,y , t� is the depth of the shallow-water layer.
After neglecting the vertical acceleration, the momentum
equation in z direction leads to a hydrostatic pressure distri-
bution, given by

P�x,y,z,t� = Pi�x,y,t� + �g�h − z� , �C2�

where Pi�x ,y , t� denotes the interfacial pressure. After apply-
ing Bernoulli’s equations along the instant streamline emit-
ting from the interface, Pi can be expressed as

Pi = Pt − �agh −
1

2
�a�V� i�2 − �a	 ��

�t
	

z=h�x,y,t�
, �C3�

where �a and V� i are the density and the velocity of the am-
bient fluid, respectively, and �=��x ,y ,z , t� is the velocity
potential. Note that the total pressure Pt is constant if the
domain of the ambient fluid is infinite. Using �C2� and �C3�
results in the momentum equations in the x and y directions,
given respectively by

�u

�t
+ u

�u

�x
+ v

�u

�y
+ gr

�h

�x
=

�

2

��V� i�2

�x
+ �

�

�x
	 ��

�t
	

z=h�x,y,t�
� ,

�C4�

�v
�t

+ u
�v
�x

+ v
�v
�y

+ gr
�h

�y
=

�

2

��V� i�2

�y
+ �

�

�y
	 ��

�t
	

z=h�x,y,t�
� .

�C5�

We follow the approach of Sec. II to simplify the two terms
on the right side of the above two equations. The derivation
procedures of these two terms are similar with those shown
in Sec. II and Appendix B. Consequently, we obtain the
three-dimensional MSWE as follows:

�u

�t
+ u

�u

�x
+ v

�u

�y
+ gr

�h

�x
= −

�

2

�

�x

 h,t

2

1 + h,x
2 + h,y

2� , �C6�

�v
�t

+ u
�v
�x

+ v
�v
�y

+ gr
�h

�y
= −

�

2

�

�y

 h,t

2

1 + h,x
2 + h,y

2� . �C7�

Equations �C1�, �C6�, and �C7� are three simultaneous partial
differential equations for u, v, and h, governing the three-
dimensional motion of inviscid gravity currents intruding
into an unbounded ambient fluid. Equations �C1� and �C6�
can be degenerated into the two-dimensional counterparts
�2.2� and �2.11� if we drop all terms involving the derivative
with respect to y.

We note that in the previous studies using analytical ap-
proaches mentioned in Sec. I, only two-dimensional gravity
currents were considered due to the limitation of the front
condition. There have been a few studies considering three-
dimensional gravity currents, however, only for limiting
cases with numerical solutions. For example, Hartel et al.
�21� solved three-dimensional Navier-Stokes equations for
Boussinesq currents ���1� by direct numerical simulation
scheme, and Zoppou and Roberts �22� investigated a three-
dimensional dam-break problem ���0� by solving shallow-

TABLE II. Descending and ascending solutions of the gravity current at three points and two relations
derived for the discussion about physical possibilities.

Descending currents Ascending currents

xs/u0t= �0 − 1

�0

�0 + 1

�0

xn/u0t= ��0 + 2��� − 1�
�0�2 + ��

��0 − 2��� + 1�
�0�� − 2�

xm/u0t= ��0 + 2��
�0�� + 2�

��0 − 2��
�0�� − 2�

�xn − xs�/u0t= 3�� − �0�
�0�� + 2�

3��0 − ��
�0�� − 2�

�xm − xn�/u0t= �0 + 2

�0�� + 2�
2 − �0

�0�� − 2�

Physical sense Possible Impossible
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-water equations with a finite-difference approach. To the
best of our knowledge, there has been no analytical approach
ever applied to three-dimensional gravity currents for arbi-
trary density contrast.

The present three-dimensional MSWE may provide a
good tool to study three-dimensional gravity currents analyti-
cally. The same approach, i.e., the asymptotic inner-outer
expansion, can be applied when the current is separated into
the far field and the near field. It is inferred that in the far

field the three-dimensional effect can be negligible so that
the two-dimensional results apply. In the near field, neverthe-
less, due to the vigorous variation in the spanwise direction
in the current head, the inner equations shall be simplified
further, as in Sec. III C, in order that the inner solutions can
be matched with the outer counterparts. The spanwise varia-
tion of the current head can be possibly obtained only if the
variation at the current front in terms of physical parameters
such as the contact angle is properly fitted into the model.

�1� J. E. Simpson, Gravity Currents in the Environment and in the
Laboratory, 1st ed. �Cambridge University Press, Cambridge
England; 1st ed., 1987, Ellis-Horwood, Chichester, 1997�.

�2� H. P. Groebelbauer, T. K. Fannelop, and R. E. Britter, J. Fluid
Mech. 250, 669 �1993�.

�3� T. B. Benjamin, J. Fluid Mech. 31, 209 �1968�.
�4� J. B. Klemp, R. Rotunno, and W. C. Skamarock, J. Fluid

Mech. 269, 169 �1994�.
�5� R. E. Grundy and J. W. Rottman, J. Fluid Mech. 156, 39

�1985�.
�6� T. K. Fannelop and G. D. Waldman, AIAA J. 10, 506 �1971�.
�7� D. P. Hoult, Annu. Rev. Fluid Mech. 4, 341 �1972�.
�8� R. E. Britter, Atmos. Environ. 13, 1241 �1979�.
�9� J. W. Rottman and J. E. Simpson, J. Fluid Mech. 135, 95

�1983�.
�10� R. E. Grundy and J. W. Rottman, J. Fluid Mech. 169, 337

�1986�.

�11� F. Chen, Appl. Mech. Rev. 53�8�, 207 �2000�.
�12� A. C. Slim and H. E. Huppert, J. Fluid Mech. 506, 331 �2004�.
�13� J. Gratton and C. Vigo, J. Fluid Mech. 258, 77 �1994�.
�14� K. K. Droegemeier and R. B. Wilhelmson, J. Atmos. Sci. 44,

1180 �1987�.
�15� A. J. Hogg and D. Pritchard, J. Fluid Mech. 501, 179 �2004�.
�16� C. C. Mei, in Lecture Notes Chap. 2 �http://web.mit.edu/1.63/

www/lecnote.html� �2001�.
�17� T. von Karman, Bull. Am. Math. Soc. 46, 615 �1940�.
�18� J. E. Simpson and R. E. Britter, J. Fluid Mech. 94, 477 �1979�.
�19� P. K. Stansby, A. Chegini, and T. C. D. Barnes, J. Fluid Mech.

374, 407 �1998�.
�20� J. A. Fay, in Oil on the Sea �Plenum, New York, 1969�, p. 46.
�21� C. Hartel, E. Meiburg, and F. Necker, J. Fluid Mech. 418, 189

�2000�.
�22� C. Zoppou and S. Roberts, Appl. Math. Model. 24, 457

�2000�.

MODIFIED SHALLOW WATER EQUATIONS FOR INVISCID… PHYSICAL REVIEW E 75, 026302 �2007�

026302-15


